CF-1 Calibration Procedure

CF1_Calibration Rev.B 10/26/2015

INTRODUCTION:

The CF-1 Calibration Fixture is used to perform field calibration of all BC-XXXX series battery capacity testers and battery chargers. The CF-1 provides an adjustable voltage reference and current shunt for setting BC-XXXX calibration points.

SCOPE:

This document provides instructions on how to perform the annual calibration for the CF-1.

- Check the adjustable voltage reference.
- Check current shunt calibration.

ADJUSTABLE VOLTAGE REFERENCE TEST EQUIPMENT REQUIRED:

- 1. Calibrated volt meter with leads.
- 2. 24Vdc power supply.
- 3. Adaptor cable assembly P/N 4161-60.

Note: This adaptor comes with the BC-XXXX machines or can be purchased from Advanced Power Products. (909)-599-7319 www.advancedpowerproducts.com

PROCEDURE:

INITIAL SETUP:

1. Plug the 4161-60 adaptor cable assembly into the CF-1 gray connector located on the left hand side of the CF-1.

CF-1 label has an arrow pointing to the left and labeled BATTERY.

- 2. Attach the 24Vdc power supply positive output to the RED wire positive ring terminal on the 4161-60.
- 3. Attach the 24Vdc power supply negative output to the BLACK wire ring terminal on the 4161-60.

- Connect the <u>calibrated</u> volt meter input leads to the CF-1 test jacks labeled V1+ (RED) and V- (BLACK). Set the voltmeter to read DC volts. See Figure 1,2
- 5. Set the CF-1 toggle switch to the +10V position.
- 6. Rotate the reference voltage adjust knob to the center position.

Figure 1

Figure 2

Voltage Reference Test:

- 1. Turn the 24Vdc power on. The voltmeter should display a voltage close to +10 volts. Rotating the adjustment knob from MIN to MAX will cause the output voltage to range from approximately 8.5 to 11.5 volts.
- 2. Connect the voltmeter input leads to the CF-1 BLACK connector output pins. The Black connector is located on the right hand side of the CF-1. See Figure 3,4

Figure 3

Figure 4

- 3. Set the CF-1 toggle switch to the +20V position.
- 4. The volt meter should display a voltage close to +20 volts. Rotating the adjustment knob from MIN to MAX will cause the voltage to range from approximately 9.0 to 21.0 volts.
- 5. Relocate the voltmeter input leads back to V1+(RED) and V- (BLACK) test jacks. Repeat line 4. This completes the CF-1 voltage reference test.
- 6. Turn off the 24V power supply. Disassemble the setup.

CURRENT SHUNT TEST EQUPMENT REQUIRED:

Note: If the CF-1 Field Calibration Fixture's current shunt needs to be characterized and certified it meets the initial 1/4% tolerance, using the resources of a certified calibration shop would be the best option. If this is not possible, the following *comparison calibration procedure* would verify the CF-1 current shunt meets an accuracy sufficient for the BC-XXXX series of products published specifications.

- 1. Adjustable constant current source. (0 to 50A)
- 2. (2) Calibrated volt meters (6-1/2 digit or better) with leads.
- 3. Calibrated Standard Shunt of 0.001 ohms (0.05% 500ppm or better)
- 4. (2) Adaptor cable assembly P/N 4161-60.

Note: The 4161-60 adaptor comes with the BC-XXXX machines or can be purchased from Advanced Power Products. (909)-599-7319 or www.advancedpowerproducts.com

5. 50 watt 0.01 ohm load resistor.

PROCEDURE:

Note: All these readings should be performed with a stable laboratory temperature of 25 degrees Centigrade.

Figure 5

- Connect the Calibrated Standard Shunt to the positive output of the adjustable constant current source following the shunts manufacturer's connection guidelines to minimize connection generated errors. See Figure 5
- Connect the Calibrated Standard Shunt output to the RED wire of a 4161-60 adaptor cable.
- 3. Connect the 4161-60 BLACK wire to the negative return terminal of the constant current source.
- 4. Connect voltmeter 1 input leads to the Calibrated Standard Shunts millivolt signal output voltage points, following the shunt manufacturer's guidelines.

- See figure 5. Set the voltmeter 1 to read DC millivolts.
- 5. Plug the 4161-60 adaptor cable from the Calibrated Standard Shunt into the CF-1 Gray connector located on the left side of the CF-1 box. The CF-1 label has an arrow pointing to the left labeled **BATTERY**.
- 6. Attach the 0.01 ohm load resistor to a 4161-60 adaptor cable. Plug the adaptor cable and load resistor assembly into the CF-1 Gray connector located on the right-side. The CF-1 label has an arrow pointing to the right labeled **TESTER**.
- 7. Connect voltmeter 2 input leads to the CF-1 test jacks labeled V2+ (RED) and V- (BLACK). The voltmeter positive input lead connects to V2+ and the negative COMMON lead to V-. Set the voltmeter to read DC millivolts. See Figure 6.

Figure 6

- 8. Set the constant current source output voltage to a 1 volt maximum output.
- 9. Set the constant current amps output to the zero output position.
- 10. Set the constant current input power switch to the ON position. Slowly increase the output current from zero until the voltmeter 1 connected to the Calibrated Standard Shunt reads a stable 0.010 volts.

This indicates 10 amps are passing thru the shunt.

- 11. Now observe and record the readings on voltmeters 1 and 2.
- 12. Now increase constant current output to 25 amps. The Calibrated
 Standard Shunt reading on voltmeter 1 will be 0.025 volts. The voltmeter 2
 reading should match this closely. Record voltmeters 1 and 2 readings.
- 13. Now increase the constant current output to 50 amps. The Calibrated Standard Shunt reading on voltmeter 1 will be 0.050 volts. Voltmeter 2 reading should match this closely. Record voltmeters 1 and 2 readings.
- 14. Set the constant current source power switch to the OFF position and disassemble the setup.

With the recorded readings and applying Ohm's Law formulas, the CF-1 current shunt can be characterized it meets the published initial resistance tolerance (+/-) 1/4% accuracy. This accuracy is sufficient to meet the BC-XXXX series of products published specifications.

Shunt Resistance (SR) = Volts / Amps Volts = 0.050 Amps =50.00

> SR = 0.050 / 50.00 SR = 0.001 Ohms

Shunt Signal Voltage (SSV) = Amps x Shunt Resistance Amps = 50.00 SR = 0.001 Ohms

SSV = 50.00 A x 0.001 Ohms

SSV = 0.050

CF-1 Shunt Resistance nominal = 0.001 Ohms +/- 1/4% @ 25C

 $+/- 1/4\% = 0.0025 \times 0.001 \text{ Ohms} = 0.0000025 \text{ Ohms}$

SR(+) = 0.001 Ohms + 0.0000025 Ohms

= 0.0010025 Ohms @ 25C

SR(-) = 0.001 Ohms - 0.0000025 Ohms

= 0.0009975 Ohms @ 25C

CF-1 Shunt Signal Voltage (SSV)

SSV (+) = 50A x 0.0010025 Ohms

= 0.050125 Volts

SSV (-) = $50A \times 0.0009975$ Ohms

= 0.049875 Volts

SSV Low Limit = 0.049875 volts @ 50Adc ; 25C deg.

SSV Nominal = 0.050 volts @ 50Adc; 25c deg.

SSV High Limit = 0.050125 volts @ 50Adc; 25C deg.

Shunt Resistive Material (Manganin) resistance rises about 0.002% per degree C. (room ambient 25 C deg.)